On 2-partitionable clutters and the MFMC property
نویسندگان
چکیده
We introduce 2-partitionable clutters as the simplest case of the class of kpartitionable clutters and study some of their combinatorial properties. In particular, we study properties of the rank of the incidence matrix of these clutters and properties of their minors. A well known conjecture of Conforti and Cornuéjols [1, 2] states: That all the clutters with the packing property have the max-flow min-cut property, i.e. are mengerian. Among the general classes of clutters known to verify the conjecture are: balanced clutters (Fulkerson, Hoffman and Oppenheim [5]), binary clutters (Seymour [11]) and dyadic clutters (Cornuéjols, Guenin and Margot [3]). We find a new infinite family of 2-partitionable clutters, that verifies the conjecture. On the other hand we are interested in studying the normality of the Rees algebra associated to a clutter and possible relations with the Conforti and Cornuéjols conjecture. In fact this conjecture is equivalent to an algebraic statement about the normality of the Rees algebra [6].
منابع مشابه
Fast Approximation Algorithms for Fractional Steiner Forest and Related Problems
We give a fully polynomial time approximation scheme (FPTAS) for the optimum fractional solution to the Steiner forest problem. This can easily be generalized to obtain an FPTAS for a hitting set problem on a collection of clutters. We also identify three other problems on collections of clutters and show how these four problems are related when the clutters have the max-flow min-cut (MFMC) pro...
متن کاملEhrhart Clutters: Regularity and Max-Flow Min-Cut
If C is a clutter with n vertices and q edges whose clutter matrix has column vectorsA = {v1, . . . , vq}, we call C an Ehrhart clutter if {(v1, 1), . . . , (vq, 1)} ⊂ {0, 1} n+1 is a Hilbert basis. Letting A(P ) be the Ehrhart ring of P = conv(A), we are able to show that if C is a uniform unmixed MFMC clutter, then C is an Ehrhart clutter and in this case we provide sharp upper bounds on the ...
متن کاملClutters : Regularity and Max - Flow Min - Cut
If C is a clutter with n vertices and q edges whose clutter matrix has column vectors A = {v1, . . . , vq}, we call C an Ehrhart clutter if {(v1, 1), . . . , (vq , 1)} ⊂ {0, 1} n+1 is a Hilbert basis. Letting A(P ) be the Ehrhart ring of P = conv(A), we are able to show that if A is the clutter matrix of a uniform, unmixed MFMC clutter C, then C is an Ehrhart clutter and in this case we provide...
متن کاملA note on Rees algebras and the MFMC property
We study irreducible representations of Rees cones and characterize the maxflow min-cut property of clutters in terms of the normality of Rees algebras and the integrality of certain polyhedra. Then we present some applications to combinatorial optimization and commutative algebra. As a byproduct we obtain an effective method, based on the program Normaliz [4], to determine whether a given clut...
متن کاملDeltas, delta minors and delta free clutters
For an integer n ≥ 3, the clutter ∆n := { {1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n} } is called a delta of dimension n, whose members are the lines of a degenerate projective plane. In his seminal paper on non-ideal clutters, Alfred Lehman manifested the role of the deltas as a distinct class of minimally non-ideal clutters [DIMACS, 1990]. A clutter is delta free if it has no delta mino...
متن کامل